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Brightness of the sky background due to lunar phase and location can dramatically a↵ect the limiting magnitude of
astronomical detectors. Formerly, theoretical models have attained limited data sets with 10-20% di↵erences between
model and observation. This paper compares and contrasts previous investigations with over a million data points
collected from various GEODSS sites located around the world, and attempts to refine predictive modeling of sky
brightness for use in scheduling, as well as modeling and simulation tools.

1. INTRODUCTION

In this paper we analyze a vast number of sky brightness observations from the United States Air Force’s
three Ground-Based Electro-Optical Deep Space Surveillance (GEODSS) sites with the goal of increasing the
fidelity of our modeling and simulation software. The GEODSS system is comprised of three facilities located
in Socorro, New Mexico; Maui, Hawaii; and Diego Garcia, British Indian Ocean Territory. Each GEODSS
telescope uses a 1 meter primary mirror and highly sensitive digital camera known as Deep STARE.[1] The
data available to us for this study includes nearly a million data points each with date and time of observation,
measured sky brightness at the sky location of observation, and atmospheric extinction coe�cient. From
the date and time for each observation we determine the phase and location of the moon relative to the
observation. For this report we are specifically interested in determining the change in the visual magnitude
of background dark sky based on the relative position and phase of the moon. Reasonably straight forward
physics based algorithms have been presented in the literature by Krisciunas and Schaefer with a reported
23% accuracy.[4] With our large statistical sampling we endeavor to improve the fit of these equations to our
data by adding a bias factor to one of our measured parameters.

2. BACKGROUND

The following equation, as derived by Krisciunas and Schaefer, represents the change in visual magnitude
caused by contributions of scattered moonlight[4]:

�V = �2.5 log[(B
moon

+B0(Z))/B0(Z)], (1)

where

B0(Z) = B
zen

10�0.4k(X�1)X, (2)

B
moon

= f(⇢)I?10�0.4kX(Zm)[1� 10�0.4kX(Z)], (3)

I? = 10�0.4(3.84+0.026|↵|+4⇥10�9
↵), (4)

f(⇢) = 105.36[1.06 + cos2 (⇢)] + 106.15�⇢/40, (5)

X(Z) = (1� 0.96 sin2 Z)�0.5. (6)

The input parameters required for these equations are lunar phase angle ↵, moon/sky separation ⇢, extinction
coe�cient k, zenith distance of the moon Z

m

, and zenith distance of the sky position Z. The only value
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required for calculating �V that we do not get directly from our data is the dark zenith sky brightness B
zen

.
To convert between linear brightness values (B) in nanoLamberts and logarithmic visual magnitudes per
square arc second (V ) we use[2]

B = 34.08e(20.7233�0.92104V ). (7)

In the following section we discuss the processing of our data and compare the theoretical values predicted
by Eqn. 1 and our measured data. Additionally we discuss a modification we make to reduce the error
between the predicted and measured values which gives us better agreement between our simulations and
measured data.

3. RESULTS/DISCUSSION

GEODSS sites operate during twilight to maximize data collection time. For our analysis the data collected
during twilight has added background brightness that we are not accounting for in this analysis so we choose
to remove this data. Data from the Maui site collected over a 10 day period is shown in Fig. 1. We manually
remove the twilight data as indicated in the figure.

Figure 1: Data acquired by the Maui GEODSS site over a ten day period. Local sunrise and sunset are
indicated on the graph. Twilight data that is circled was removed for the analysis presented in this paper.

Once the twilight data is removed we separate out the data for each site collected when there is no moon in
the sky. We use this “moonless” data to calculate a median dark sky visual magnitude. The value for the
dark sky visual magnitude for each site is used in Eqn. 7 to find B

zen

. We then use Matlab R� to perform
an optimized fit for �V . The optimization algorithm we use minimizes the mean squared error (MSE).
The histograms for the errors for each of the GEODSS sites is shown in Fig. 2a. The value for MSE for
Socorro, Maui, and Diego Garcia is 0.324, 0.518, and 0.462 respectively. The asymmetric nature of these
histograms is an indication that we may not be accounting for one or more systematic sources of error. We
acknowledge that we are not accounting for some sources of sky brightness to include galactic latitude[5] of
our observation as well as fluctuations in solar brightness[3].

In an attempt to keep our modeling and simulation algorithms relatively simple we choose to apply an
empirical bias factor to B

zen

as opposed to using more complicated algorithms that take secondary e↵ects
such as galactic latitude and solar activity level into account. In doing this we break the connection between
V and B

zen

given by Eqn. 7. When we allow these two variables to be optimized independently by the
fitting function we arrive at a fit that is an average of 32% better. The most significant change is for the data
from Maui which is more than 50% better according to this metric. The new MSE values are 0.268, 0.240,
and 0.344 for Socorro, Maui, and Diego Garcia respectively. The fitting results are shown in Table 1. The
columns labeled V , B

zen

and MSE are the results from directly using Eqns. 1-6 whereas the last two columns



(a) The fitting parameter for this set of histograms
is the dark zenith sky brightness Bzen.

(b) The fitting parameters for this set of histograms
are the dark zenith sky brightness Bzen and �V .

Figure 2: Histograms of the error between theory and data for the three GEODSS sites located at Socorro,
NM; Maui, Hawaii; Diego Garcia from top to bottom respectfully in each figure.

represent the values where we allow B
zen

to vary independently from V . We call these new values B?

zen

and
MSE?. For completeness we include the average extinction coe�cient k from our data which we used for
these fits. Using this two parameter fitting approach, we arrive at a fairly simple empirical equation that

Table 1: Fitting Parameters

Site k V B
zen

MSE B?

zen

MSE?

Socorro 0.60 21.11 122.59 0.324 165.82 0.268
Maui 0.54 21.35 98.28 0.518 224.18 0.240

Diego Garcia 0.34 21.10 123.73 0.462 199.89 0.344

can be used in our modeling and simulation work. The blue dots shown in Fig. 3 are calculated using this
equation, while the black dots represent measured data from the Socorro GEODSS site. The ten subfigures
show the value of �V for di↵erent lunar phases. The data and fits from Maui and Diego Garcia show similar
agreement.

4. CONCLUSION

In conclusion we feel that by using Krisciunas’ and Schaefer’s equations with the addition of a small bias
factor for B

zen

, we achieve nice agreement between predictions and measured data for the brightness of the
night sky as a function of lunar phase and location. The addition of this algorithm to our modeling and
simulation software allows us to further enhance the fidelity of our results.

We would like to thank the Electronics Systems Center’s HSIJ program o�ce and the Executive Agent for
Space (EA4S) for continued support of our modeling and simulations e↵orts.



Figure 3: Comparison of simulated results and data collected from the Socorro, NM GEODSS site. Each
subfigure shows a di↵erent moon phase ↵.
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